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EVALUATION OF SELECTED mFRACTORY OXIDE MATERIALS FOR 

USE I N  HIGH-TEMPERATURF: PEBBLE-BED 

WIND-TUNNEL HEAT EXCHANGERS 

By John D. Buckley and BeMie W. Cocke, Jr. 
Langley Research Center 

SUMMARY 

A t e s t  program has been carr ied out t o  evaluate several  commercially avai l -  

Results are presented from comparative tests 
able ceramic oxide refractory materials considered promising f o r  use i n  3000O F 
t o  50000 F pebble-bed a i r  heaters.  
i n  laboratory kilns on the  high-temperature properties of several  types of z i r -  
conia, thoria ,  magnesia, and alumina materials. A discussion of materials 
selection f o r  pebble-bed heat-exchanger construction i s  presented based on the  
aforementioned tests and operational experience with heat exchangers. 

The results of t h i s  program indicate  t h a t  alumina i s  the  most desirable 
refractory f o r  use a t  temperatures below approximately 3 b O o  F and calcia- 
s tab i l ized  zirconia appears most desirable fo r  use a t  the  higher temperatures. 
Loss of compressive strength a t  high temperature limits the  maximum temperature 
fo r  zirconia usage t o  approximately 4100O F. 
materials showed a wide var ia t ion i n  properties such as c rys ta l  s t a b i l i t y  and 
thermal-shock resistance; thus,  there  i s  a need t o  t e s t  and se lec t  different  
types of zirconia f o r  different'environmental regions i n  a heat exchanger. 
materials thoria  and magnesia a re  considered in fe r io r  t o  zirconia for use i n  a 
40000 F heat exchanger. 

T e s t s  of several  types of zirconia 

The 

INTROlXTCTION 

The need f o r  high-temperature ground f a c i l i t i e s  f o r  research on materials 
and heat-transfer problems associated with reentry and hypersonic f l i g h t  l ed  t o  
a program a t  the  NASA Langley Research Center t o  develop high Mach number tes t  
f a c i l i t i e s  using ceramic pebble-bed heat exchangers t o  supply high-temperature 
a i r .  Under this program heat exchangers w e r e  constructed and operated a t  tem- 
peratures t o  over 40000 F by using calcia-s tabi l ized fused-grain zirconia refrac- 
to ry  l inings and pebble beds. I n i t i a l  operation of these f a c i l i t i e s  described 
i n  reference 1 w a s  successf'ul; however, problems developed with the  zirconia 
materials i n  cer ta in  regions of the heat exchangers. 
refractory l in ing  and compacting of the  pebble bed w e r e  problems i n  the high- 
temperature zones and, i n  addition, a serious decomposition of the  zirconia 

Thermal shock of the  



material  ident i f ied  as inversion (see r e f .  2) occurred a t  lower temperature 
regions i n  the l in ing  and bed of the heat exchanger. 

Since very limited data were available on the properties of zirconia and 
other high-temperature refractory oxide materials a t  elevated temperatures and 
under the type of cyclic heating environment imposed by exchanger operation, a 
program w a s  undertaken t o  define, on a d i rec t  comparative basis, the properties 
of several  refractory oxide materials available fo r  possible use i n  heat 
exchangers a t  temperatures above 3000° F. 

I n  t h i s  program, the materials chosen f o r  evaluation were s tabi l ized z i r -  
conia of several  types, thoria ,  magnesia, and alumina. 
w a s  l imited t o  the  objective of determining the su i t ab i l i t y  of the various mate- 
rials f o r  use i n  the cycling heat exchanger which i s  capable of temperatures 
from 30000 F t o  5000° F. 
thermal-shock resistance, s t a t i c  load, and crystal l ine s t a b i l i t y  properties 
under cycling temperatures fo r  refractory br ick of the s ta ted  materials. Also 
included were t e s t s  t o  evaluate the c r i t i c a l  temperatures f o r  reactions a t  the 
interface between the various materials i f  used i n  contact i n  the design of a 
heat exchanger. 

The program conducted 

Tests were designed t o  determine the comparative 

This report presents the results of tests cbnducted under t h i s  program and 
includes data obtained i n  laboratory test  kilns, and some data obtained by 
observation of material behavior i n  the actual  heat exchanger. The su i t ab i l i t y  
of the  various materials fo r  heat-exchanger use i s  discussed. 

PROBLEM AND TEST APPROACH 

Ceramic Heat-&changer Problem Areas 

A typ ica l  ceramic heat exchanger used t o  produce high-temperature air  for  
a blowdown j e t  o r  wind tunnel i s  i l l u s t r a t e d  i n  figure 1. 
s t e e l  pressure vessel  which i s  l ined with insulating and refractory ceramics 
and pa r t i a l ly  f i l l e d  i n  i t s  center core with a porous bed of 3/8-inch-diameter 
ceramic pebbles f o r  heat storage. A burner i s  provided f o r  heating the pebble 
bed and a water-cooled nozzle i s  located a t  the top t o  provide a test  region 
f o r  models. 
oxygen enrichment and the exhaust gases pass down through the porous bed u n t i l  
the  desired temperatures a re  reached i n  the bed; the burner and exhaust are  then 
closed off and high-pressure a i r  i s  brought i n  a t  the bottom and passes through 
the heated pebble bed and out through the water-cooled nozzle t o  give the 
desired heated airstream f o r  t e s t s .  Details of design and operation of t h i s  
heat exchanger are  discussed i n  reference 1. 

It consists of a 

In  operation the burner i s  f i r e d  by using propane and a i r  with 

A typ ica l  heat-exchanger operation subjects the ceramic l in ing  and pebble- 
bed materials t o  a temperature-cycling environment i n  which the m a x i m u m  tempera- 
tures and heating r a t e s  are  determined by operating techniques fo r  the individ- 
u a l  f a c i l i t y .  
mterials are fixed by design. 
exchanger using pa r t i a l ly  calcia-stabil ized zirconia refractory l i n e r  brick and 

The s t a t i c  load conditions on various components of the  refractory 
In  the i n i t i a l  operation of the subject heat 
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pebbles, three basic problem areas were noted, a different  material property 
being m o s t  s ignificant i n  each respective area. 
burner flame is  a maximum during heating, thermal-shock resistance i s  of prime 
importance i n  the refractory brick work and top layers of the pebble bed; area B 
i s  a 30000 F t o  4000° F temperature zone and load capabili ty becomes c r i t i c a l  a t  
a depth i n  the bed where loss  of strength a t  elevated temperature may cause com- 
pacting of the pebbles due t o  p l a s t i c  deformatfon and thus loss of bed porosity; 
the t h i r d  area designated C and described i n  figure 1 by the band running a t  
varying depths within the l i n e r  wall i s  a moderate temperature (approximately 
2100° F maximum) region where inversion (crystal l ine in s t ab i l i t y  discussed i n  
ref .  2) caused crumbling of the calcfa-stabil ized zirconia used i n  the i n i t i a l  
operation of the f a c i l i t y .  Examples of the types of ceramic damage are  shown i n  
figure 2. 

In  area A ( f ig .  1) where the 

30.0 a t  2400° F 

Materials hraluated 

4.0 

The consideration of materials fo r  use i n  the 3000° F t o  5000° F a i r  heater 
l i m i t s  the  choice of materials t o  commercial oxides with melting points over 
3000° F. 
these conditions and included zirconia manufactured i n  several ways, thoria,  
magnesia, and alumina. The general properties and normal melting temperatures 
as  published i n  general l i t e r a t u r e  fo r  these refractory oxides a re  shown i n  
table  I. As shown, the various zirconia products differed primarily i n  the 
degree and type of material  used t o  gafn crystal l ine s t a b i l i t y  i n  the material. 
Three types of calcia-stabil ized zirconia were tes ted  and two types using the 
rare  earths cer ia  and y-ttria f o r  s tab i l iza t ion  were tested.  As shown, t e s t s  
were limited t o  one type of thoria ,  magnesia, and alumina. 

Tests were therefore l imited t o  hown and available materials meeting 

Material 

Zirconia A 

Zirconia B 

Zirconia C 

Zirconia D 

Zirconia- E 

Thoria 

Magnesia 

Rlumina 

TABLE I.- REFRACTORY MATERIALS EVAIUATED 

[Theoretical values obtained from reference 3 

Chemical symbol 
and charac te r i s t ics  

ZrO2 - fused grain, 
p a r t i a l l y  s t a b i l i -  
zed with ca lc ia  

ZrO2 - fused grain, 
f u l l y  s tab i l ized  
with ca lc ia  

ZrO2 - fused grain, 
p a r t i a l l y  s t a h i l i -  
zed with cer ia  

ZrO2 - sintered,  
p a r t i a l l y  s t a h i l i -  
zed with ca lc ia  

Zr02 - sintered,  
p a r t i a l l y  s t a b i l i -  
zed with yttria 

Tho2 - high purity 

M g O  - high pur i ty  

A1203 - high pur i ty  

2 

Theoretical values 

Melting 
.emperatwe, 

4 m  

4800 

4200 

4900 

4700 

5975 

5075 

3700 

Thermal Specific 
conductivity I gravity I 

14.3 a t  2bOo F 1 ;3: 1 
14.3 a t  2 b 0  F 

14.3 a t  24000 F 1 5.6 1 
lk.3 a t  2@Oo F 1 ;q 
14.3 a t  2@0° F 

14.0 a t  240O0 F I 10.0 I 
40.8 a t  2012O F I 3.57 1 
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T e s t  M e t  hods 

Tests under this program were designed t o  evaluate the available refrac- 
tory products i n  terms of the properties required f o r  use i n  the  c r i t i c a l  
regions discussed, t ha t  i s ,  these t e s t s  simulated as closely as possible the 
environment of the c r i t i c a l  zones of the heat exchanger. Since operating 
experience with fused-grain pa r t i a l ly  s tabi l ized zirconia was available, a l l  
tests were conducted on a direct  comparative basis  with t h i s  material. In addi- 
t ion,  t e s t s  were included t o  determine the compatibility of the various ceramics 
i n  contact a t  elevated temperatures. ( a )  thermal 
shock, (b)  high-temperature load, ( c )  c rys ta l l ine  s t ab i l i t y ,  and (d)  reaction 
temperature. A l l  t e s t s  f o r  thermal-shock and high-temperature load capabili ty 
were made i n  the zirconia l ined t e s t  kiln with samples set on pa l l e t s  of the 
t e s t  materials t o  minimize effects  of possible reactions between materials. 

The following tests were made: 

Thermal-shock t e s t s . -  Thermal-shock resistance of the  various materials 

For these 
was determined by heating t e s t  samples i n  brick i n  an oxyacetylene-fired test 
kiln constructed with a zirconia refractory a s  shown i n  figure 3 .  
tests, bricks of each material type being evaluated were placed i n  the k i ln  
with a brick of the fused-grain pa r t i a l ly  s tabi l ized zirconia type (hereafter 
referred t o  as  standard zirconia A )  and arranged so tha t  the torch flame would 
impinge the front faces of the bricks ( f ig .  4) as  i n  the  ceramic heater usage. 
Brick specimens used f o r  most t e s t s  were typ ica l  heat-exchanger shapes with 
tongue and groove jo in ts  as shown i n  figure 4. For two of the t e s t  materials, 
standard shapes were not available and specimens of comparable s ize  and shape 
were cut from basic s t ra ight  brick. In  a typ ica l  single-cycle t e s t ,  the  top of 
the  kiln would be closed and the torch f i r e d  a t  a fixed f i r i n g  rate u n t i l  the 
samples reached a temperature of approximately booo  F as determined from an 
opt ical  pyrometer viewing the samples through the  s ide viewing port .  The torch 
was then shut off and the samples were allowed t o  cool t o  ambient conditions 
fo r  examination. For multiple cycle t e s t s ,  the  torch was re f i red  when the 
samples cooled t o  approximately 3000° F i n  each cycle t o  more nearly represent 
the heat-exchanger operation as  a continuously f i r e d  f a c i l i t y .  
ra tes  for  these t e s t s  required approximately 30 minutes t o  heat from ambient t o  
3000° F and approximately 1 hour t o  heat from 30000 F t o  b o o o  F. 
were limited t o  a maximum temperature of 41000 F by the capabi l i t ies  of the 
t e s t  kiln. 

Kiln f i r i n g  

All t e s t s  

High-temperature static-load evaluation.- - .. The basic load capabili ty of the 
refractory products was evaluated at--temperatures between approximately 3b0° F 
and 40000 F by heating 1-inch cubes of the individual materials under a s t a t i c  
load i n  the oxyacetylene kiln. Figure 5 i l l u s t r a t e s  the typical  manner of 
arranging a t e s t  cube under weight i n  the k i ln  chamber and figure 3 shows the 
k i ln  with the top closed and a loading weight protruding through a chimney 
opening i n  the top. A typical  t e s t  consisted of heating the cube under the 
thosen weight and recording the temperature a t  which the load column s igni f i -  
cantly slumped due t o  cube fa i lure  a t  the specific load. Cube temperature as  a 
function of time during heating was monitored by an opt ical  pyrometer on each 
tes t .  The t e s t s  a t  various loadings were accomplished a s  separate t e s t s  with 
new cubes and loading weights used fo r  each t e s t .  Loading weights were observed 
a f t e r  each t e s t  t o  insure tha t  no deformation of the loading t r a i n  had occurred. 

-- 
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Each test condition was repeated a t  l ea s t  twice fo r  a check on repeatabil i ty of 
t e s t  technique. 
imately 1 hour and then the temperature was increased a t  a r a t e  of approximately 
30° F per minute u n t i l  f a i lu re  occurred. 

I n  typ ica l  t e s t  cycles the cube was heated t o  3000° F i n  approx- 

Evaluation of c rys ta l  s t ab i l i t y . -  The c rys ta l  structure of zirconia ( d i s -  
cus.sed i n  refs .  2 and 4) makes t h i s  material subject t o  s t ruc tura l  breakdown 
because of a c rys ta l  inversion which occurs when the material i s  heated t o  the 
characterist ic temperature range from 15000 F t o  21000 F. 
a l s  used i n  t h i s  program each had been manufactured with additives such as  calcia  
or the rare  ear th  oxides t o  s tab i l ize  the c rys ta l  structure and the zirconia 
products were considered t o  be f r ee  of the tendency of inversion breakdown. A n  
evaluation of the effect  of low-temperature (1500° F t o  2100° F) cycling on the 
strength of the various zirconia materials was conducted, however, t o  determine 
the degree of s tab i l iza t ion  achieved. 
pebbles and cubes from different  zirconia brick t o  repeated heating cycles 
between l l O O o  F and approximately 2100O F. 
e l ec t r i c  heat-treat  furnace ( f ig .  6 )  which was programed t o  heat and cool auto- 
matically between the temperature limits desired. Temperature time h is tor ies  
fo r  each cycle (heat t o  21000 F and cool t o  11000 F) were recorded on a Brown 
recorder connected for  continuous temperature sampling. Cooling phases were 
accomplished with the furnace closed and heating ra tes  were chosen t o  give slow 
cycles (approximately 4 hours/cycle) as  similar as  possible t o  the heater 
environment. 

The zirconia materi- 

This evaluation was made by subjecting 

These t e s t s  were conducted i n  an 

The procedure i n  a typ ica l  test for  strength loss  due t o  thermal cycling 
consisted of subjecting the t e s t  material t o  25 t o  50 cycles of heating i n  the  
furnace and then measuring the cold crushing strength of the cube or pebble i n  
a dynamometer with load application r a t e  maintained constant for  a l l  t e s t s .  

Reaction temperatures fo r  dissimilar refractor ies  i n  contact.- The tendency 
for  the various refractor ies  t o  react (eutect ic  formation) when i n  contact a t  
elevated temperatures was studied from the viewpoint of defining the maximum 
temperatures a t  which the various materials could be u t i l i zed  i n  heat-exchanger 
construction without having damaging reactions a t  the contacting surfaces. Tests 
were conducted by placing the various combinations of ceramics i n  the 
oxyacetylene-fired k i l n  with surfaces i n  contact under moderate loadings (1/2 t o  

peratures u n t i l  the temperature fo r  a damaging reaction a t  the contacting sur- 
. 6  pounds per square inch) and f i r i n g  the materials t o  progressively higher tem- 

faces was defined. For some materials, additional t e s t s  were 
effects  of loading and time on the extent of reaction between 
materials. 

made t o  define the 
the subject 

RFSULTS AND DISCUSSION 

Thermal Shock Properties 

The resu l t s  of t e s t s  t o  compare the a b i l i t y  of the various refractory mate- 
r i a l s  t o  withstand thermal shock are  summarized i n  figure 7 and photographs 
showing the condition of various materials a f t e r  the t e s t s  a re  presented i n  
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figures 8 t o  13. 
t o  withstand severe thermal shock without cracking and it i s  important t o  note 
tha t  the  variation was as  great between the  various zirconia products as  between 
the different  types of materials. 

A s  can be seen, the materials varied greatly i n  t h e i r  a b i l i t y  

Zirconia.- Figures 8 t o  10 show visually the difference between the various 

A s  can be seen, the pa r t i a l ly  calcia-stabil ized material (zirconia A)  
zirconia products tested and illustrate the wide var ie ty  of shock damage 
observed. 
exhibited the best t he rm1  shock capabili ty of any of the zirconia materials 
tested and zirconia B, a fully calcia-stabil ized material, proved superior t o  
the available zirconia products (materials C and E, f i g s .  8 and 10) u t i l i z ing  
y t t r i a  and cer ia  s tabi l izat ion.  
ever, t ha t  a wide difference i n  properties was found when comparing various 
calcia-stabil ized zirconia products. 

(See tab le  I.) It should be a l so  noted, how- 

(Compare materials A, B, and D of f ig .  9.) 

On the basis of these tests, it must be concluded tha t  the calcia-stabil ized 
zirconia materials have the best  thermal-shock resistance and, as would be 
expected from the l i t e r a tu re  ( re fs .  4 and 5 ) ,  the  best  shock resistance i s  
obtained i n  a pa r t i a l ly  s tabi l ized zirconia. 
grain size,  product density, and processing are known t o  influence f i n a l  mate- 
r i a l  performance; therefore, it appears t ha t  an actual  test remains the only way 
t o  make f i n a l  comparisons of the  available products. A s  demonstrated by the 
resu l t s  of repeated cycling of the  be t te r  zirconia of t h i s  t e s t  ser ies  (zirco- 
nia  A and B i n  f ig .  ll), the pa r t i a l ly  calcia-stabil ized material (zirconia A)  
i s  capable of repeated cycling without severe breakdown and i s  considered the 
best type of current zirconia material f o r  use a s  brickwork and pebbles i n  the 
high-temperature regions of a booo F heat exchanger. 

Other factors  such as impurities, 

Magnesia.- The r e su l t s  of comparison t e s t s  between magnesia refractory 
brick and the best zirconia product of t h i s  test  ser ies  (zirconia A )  are  shown 
i n  figure 12. As can be seen, the magnesia exhibited marked cracking tendencies 
a t  three heating cycles. Distinct signs of material vaporization on the high- 
temperature face of the  brick were noted. This vaporization was expected from 
the l i t e r a tu re  ( re f .  6) since t h i s  material i s  reported t o  exhibit high vapor 
pressure. 
nesia a s  a possible material fo r  heat-exchanger use; however, zirconia A appears 
t o  be superior i n  most respects fo r  usage between 3x00  F t o  b O O o  F. 

The t e s t  results would not completely ru le  out consideration of mag- 

Thoria.- The refractory thoria  was compared with zirconia A a t  the normal 
zirconia operating range (30000 F t o  booo  F) although thoria  was being con- 
sidered as  a possible material f o r  increasing the range of heat-exchanger 
operation t o  temperatures w e l l  above booo  F. 
showed that the  bricks spalled very severely when compared with zirconia A. 
the  basis  of these t e s t s ,  thoria i s  not considered t o  be acceptable fo r  heat- 
exchanger use even i n  the booo  F range. 
active nature of thoria  would complicate a l l  operations and maintenance pro- 
cedures on a f a c i l i t y  using this material. 

Thermal-shock results ( f ig .  13) 
On 

It should a l so  be noted tha t  the radio- 
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High-Temperature S ta t ic  Load Capability 

Zirconia.- Results of t e s t s  t o  define the m a x i m  load capabili ty i n  the 
3500° F t o  4000 0 F temperature range fo r  the several zirconia products evaluated 
are presented i n  figures 14 and 15. These resu l t s  show t h a t  the products ranked 
most acceptable f o r  thermal-shock properties (zirconia A, B, and C )  a l l  l o s t  
strength rapidly ( f ig .  15) a t  the elevated temperatures and test resu l t s  
( f igs .  14(b),  14(c),  and 14(d)) indicate tha t  loads above 4 pounds per square 
inch will produce compressive fa i lures  i n  any of these materials a t  temperatures 
above 40000 F. For zirconia products D and E, load capabili ty was higher and 
the 1-inch cubes of these materials withstood loads of 6 pounds per square inch 
a t  h O O + O  F without f racture  ( f igs .  14(e) and 14 ( f ) ) .  The poor thermal-shock 
capacity of these two materials (discussed i n  the previous section) prevented 
the exact evaluation of m a x i "  load capabili t ies,  since the loading weights 
made from these materials spalled severely from thermal shock as  shown i n  f ig -  
ure 14(f) .  
properties found i n  zirconia products of different  compositions. 

These results primarily serve t o  indicate again the wide range of 

The most s ignif icant  r e su l t  of the loads tes t ing  is  shown i n  figure 15 
where it can be seen tha t  the  f u l l y  calcia-stabil ized zirconia product B had 
appreciably lower load capabildty than the par t ly  calcia-stabil ized zirconia A. 
This difference i s  most pronounced a t  the moderate temperatures (3OOOO F t o  
38000 F);  thus, heater components such as  pebbles made from the fully stabi l ized 
material would be more prone t o  compacting i n  the hot sections of the heat 
exchanger than would pebbles made from the par t ly  s tabi l ized product. 

Magnesia and thoria.-  The high-temperature load capabili ty of these mate- 
r i a l s  could not be accurately defined because of reactions between these mate- 
rials and the  zirconia f loor  of the  test  kiln. Generally, both refractory mate- 
r i a l s  exhibited good compressive strength properties, and the  thoria  material 
withstood loads as  high as 8 pounds per square inch a t  4200" F. 

Evalua t i on of C ry s t  a 1  S tab i l i t y  

The effect  of repeated thermal cycling between l l O O o  F and 21000 F on the 
cold strength fo r  the various zirconia materials i s  presented i n  figure 16. 
There i s  a wide variation i n  strength between the  various zirconia products, 
but especially evident i s  the severe loss  i n  strength shown fo r  the pa r t i a l ly  
calcia-stabil ized zirconia A. These data a s  w e l l  a s  data from t e s t s  of pebbles 
( f ig .  17) i l l u s t r a t e  the need t o  consider t h i s  property of zirconia fo r  cases 
where the material may be subjected t o  cycling a t  the lower temperature levels.  
Although these resu l t s  confirm general concepts t ha t  fu l ly  calcia-stabil ized and 
rare-earth-stabilized zirconia products w i l l  not suffer severe inversion break- 
down, it must be remembered tha t  the s tab i l iza t ion  process f o r  zirconia i s  not 
f u l l y  understood t o  date and it appears t ha t  product t e s t ing  may be required 
fo r  some time t o  insure attainment of the product properties desired i n  the 
par t icular  zones of heater ins ta l la t ions .  
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Contact Reactions Between Refractories 

The results of tests made t o  define the  l imit ing temperature f o r  interface 
contact between the  various re f rac tor ies  and summarized i n  figure 18 and photo- 
graphs showing typica l  reaction damage f o r  some of the  materials are shown i n  
figures 19 t o  22. A s  w a s  expected from the  l i t e r a t u r e  (ref.  7) ,  zirconia w a s  
found t o  react with alumina and magnesia ra ther  severely f o r  temperatures above 
approximately 3100° F ( f i g .  18), and furthermore an unexpected reaction between 
zirconia and thor ia  w a s  encountered when these materials were i n  contact under 
load a t  temperatures exceeding 3500° F. 
reaction damage between zirconia and magnesia or thor ia  are shown i n  figures 19 
t o  21. A s  can be seen, the reacting surfaces weaken as the  materials react  a t  
t he  interface and migrate i n t o  each other u n t i l  f i na l ly  a s ignif icant  failure 
r e su l t s  ( f ig .  21(b)) a t  t he  interface.  From these results it i s  apparent t h a t  
extreme caution must be exercised i n  attempting t o  place other refractory mate- 
r i a l s  i n  contact with zirconia i n  heat-exchanger usage. 

Typical examples of the  interface 

I n  considering the  other possible refractory combinations, it i s  seen 
( f i g .  18) t h a t  no reaction w a s  noted between thor ia  and magnesia t o  the  l imit ing 
temperature of t h i s  t es t  ( b o o o  F) ,  and f o r  the  case of thor ia  and alumina only 
mild reaction w a s  noted a t  temperatures approaching normal m a x i m u m  use tempera- 
tu res  fo r  the  alumina. Combinations of magnesia and alumina a re  known t o  be 
compatible up t o  normal use temperatures f o r  alumina (approximately 3b0° F) .  
(See ref. 8 . )  

Refractory Choice i n  Heat-Exchanger Design 

A s  was indicated earlier i n  t h i s  paper, heat-exchanger usage subjects 
refractor ies  t o  a wide var ia t ion i n  operation environments and, as a result, the 
important properties required i n  a material vary from point t o  point i n  a heater. 
When t h i s  variable environment i s  considered i n  the  l i g h t  of the  tes t  results 
fo r  the  refractory materials considered herein, it i s  seen tha t  no one material 
appears t o  be optimum fo r  usage a t  a l l  points i n  the  system. The choice of 
materials fo r  the system then becomes a compromise based on the most important 
factors  a t  each region and the  materials currently considered the best  choices 
fo r  use i n  a 3200° F t o  k 0 O o  F heat exchanger are as follows: 

High-temperature- zone.- For the  inner l i n e r  br ick and top layers of pebbles 
i n  the  upper high-temperature sections (approximately 3000° F t o  booo F )  of the 
heat exchanger where materials a re  subjected t o  burner f l a m e  temperatures of 
4500° F o r  more during heating cycles, thermal-shock capabili ty i s  of prime 
importance with hot load capacity a l so  s ignif icant .  
s tabi l ized zirconia, such as zirconia A, must be considered as the best  material  
since the  fu l ly  s tab i l ized  types of zirconia, t he  thoria ,  and the  magnesia 
refractor ies  a l l  had poor thermal-shock capabi l i t i es  compared with the  best  z i r -  
conia materials. It i s  a l so  pointed out t h a t  none of the other refractor ies  can 
be mixed by in ten t  or  accident with zirconia i n  t h i s  region o r  low-temperature 
reactions will r e su l t  i n  refractory failure. 

Here a p a r t i a l l y  calcia- 

Moderate-temperature zones.- For t he  moderate-temperature sections of the 
system (1500° F t o  3000° F) such a s  the  middle depths of t he  pebble bed, the 
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middle sections of the l i ne r ,  and the insulating brickwork a t  upper levels ,  the 
fu l ly  calcia-stabil ized type zirconia appears t o  be the most acceptable material 
f o r  use. 
however, high resistance t o  inversion-type strength loss  i s  needed since the 
c r i t i c a l  inversion temperatures of 18000 F t o  21000 F fo r  zirconia w i l l  be 
repeatedly reached somewhere i n  t h i s  zone. The filly calcia-stabil ized zirconia 
has been successfully used i n  t h i s  region i n  the Langley 11-inch ceramic heated 
tunnel and i s  presently considered the best  material choice for  t h i s  middle tem- 
perature zone. Although the temperature range i s  suff ic ient ly  low t o  suggest 
use of other low-temperature refractor ies ,  t h i s  approach mus t  be used with great 
caution t o  avoid incurring reaction damage (contamination) i n  the higher tem- 
perature zones of the zirconia by pa r t i c l e  transport during f a c i l i t y  blowdown. 

I n  t h i s  region only moderate thermal-shock properties a re  required; 

Low-temperature zones.- Only very tightxy bonded materials such a s  alumina 
a re  considered acceptable fo r  mixed usage even i n  the lower temperature sections 
such as the lower l i n e r  and pebble bed since airflow would transport loose par- 
t i c l e s  t o  the hot zones above. It should also be noted tha t  extreme care mus t  
be exercised i n  using other materials for  insulation within the walls of heat 
exchangers as  a i r  channeling (bypassing through walls) can transport these mate- 
r i a l s  unless the system i s  properly designed. The acceptabili ty of high-purity, 
high-density alumina fo r  such usage i s  considered t o  be well established, a s  
t h i s  material has been continuously used i n  the lower sections of the subject 
heat exchanger ( f ig .  1) without causing contamination of the zirconia materials. 

On the basis of t e s t s  reported here and the experience gained i n  operating 
the subject heat exchanger, it can be said tha t  available materials enable the 
construction and successful operation of air  heat exchangers t o  temperatures of 
approximately 41000 F. 
material (calcia-stabil ized zirconia) can only be graded as  ju s t  acceptable 
since appreciable yearly maintenance i s  required and airstream contamination by 
loose grains of zirconia can be a severe problem unless flow velocity through 
the pebble bed i s  kept very low by i n i t i a l  design. 

It should be pointed out, however, t ha t  the best  current 

CONCLUSIONS 

Studies of the comparative properties of several high-temperature refractory 
oxide materials available for  use i n  wind-tunnel heat exchangers leads t o  the 
following conclusions: 

1. Fused-grain pa r t i a l ly  calcia-stabil ized zirconia has the best thermal- 
shock resistance of a l l  the  materials tes ted  and i s  the most acceptable material 
fo r  use i n  the 'high-temperature sections of heat exchangers fo r  operation above 
3b0° F. 

2. I n  general, a l l  calcia-stabil ized zirconia product exhibited thermal- 
shock properties superior t o  the experimental rare  earth (cer ia  and y t t r i a )  
s tabi l ized materials available for  study. 

3. Thoria and magnesia both appear unsuitable fo r  cyclic use a t  high tem- 
peratures because of poor thermal-shock capabi l i t ies .  
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4. Stabilized zirconia undergoes a rapid lo s s  of s t a t i c  load capabili ty 
above 3000' F and test r e su l t s  indicate loadings should not exceed approximately 
4 t o  6 pounds per square inch i n  high-temperature sections of a zirconia heat 
exchanger. 

5.  Deterioration (strength lo s s )  due t o  c rys ta l l ine  inversion with zirconia 
products varies with degree of s tabi l izat ion.  I n  general, fu l ly  s tabi l ized 
products using e i ther  calcia  or ra re  ear th  materials f o r  s tabi l izat ion suffer 
l i t t l e  strength loss  on cycling; however, the p a r t i a l l y  s tabi l ized materials may 
lose a l l  strength and crumble a f t e r  as  f e w  as 50 cycles i n  the c r i t i ca l tempera-  
ture range (approximately 16000 F t o  2100O F).  

6. Studies of the  reaction temperature f o r  t he  various refractor ies  indi-  
cate t ha t  zirconia reacts  (forms so l id  solution on contact) with a l l  other mate- 
r i a l s  tested a t  temperatures appreciably lower than the normal use temperatures 
of t he  individual materials. 

7. The variation i n  thermal shock and s t a b i l i t y  properties of zirconia 
products available requires careful evaluation of products considered fo r  heat- 
exchanger use. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., June 22, 1964. 
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Figure 1.- Section view of ceramic heat  exchanger. 
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(a) Thermal shock and inversion damage. L-59-7449.1 

(b) Pebble compacting from load at temperature. 

Figure 2.- Typical brick and pebble damage observed with standard calcia-stabillzed zirconia. 
Zirconia A. 

L-64-4400.1 



Figure 3.- Typical kiln setup ready for firing with t es t  cube under load. L-62-3335.1 
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I 

L-62-3359.1 
Figure 4.- Arrangement of t e s t  br icks  i n  kiln for thermal-shock t e s t s  

L-62-3356.1 
Figure 5.- Arrangement of t e s t  cube i n  kiln for hot load t e s t s .  



L-62-3358 
Figure 6.- E l e c t r i c  furnace setup with Brown recorder for thermal cycling tes ts .  
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Figure 7.- Number of thermal cycles required t o  produce cracks i n  refractory bricks. Ambient t o  4000° F 
and then cycled from 3000° F t o  4000° F. 



L-62-4470.1 
Figure 8.- Comparison of e f f e c t  of thermal shock on z i rconia  A ,  z i rconia  B, and z i rconia  C after 

2 cycles between 800 F and 4000' F and 2 cycles between 3000' F and b o o o  F. 

L-62-4467.1 
Figure 9.- Comparison of e f f e c t  of thermal shock on z i rconia  A, z i rconia  B, and z i rconia  D after 

1 cycle between 80° F and 4000° F and 3 cycles between 3000° F and b o o o  F. 
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L-62-4466.1 
Figure 10.- Comparison of e f f e c t  of thermal shock on z i rconia  A ,  z i rconia  B, and z i rconia  E a f t e r  1 cycle 

between 80° F and @0Oo F. 

L-62-4466.1 
Figure 11.- Comparison of e f f e c t  of thermal shock on z i rconia  A and z i rconia  B after 3 cycles between 

80° F and 40000 F and 5 cycles between jOOOo F and 4000° F. 



L-62-4465- 1 Figure 12.- Comparison of e f f e c t s  of thermal shock on magnesia and z i rconia  A a f t e r  2 cycles between 
800 F and 3 8 0 0 ~  F and 1 cycle between 3000° F and 38000 F. 

L-59-6731.1 Figure 13.- Comparison of e f f e c t  of thermal shock on tho r i a  and zirconia A a f t e r  2 cycles from 80° F 

t o  ‘+200° F. 



( a )  Zirconia A; 4 pounds per  square inch a t  4100° F. L-62-4475.1 

(b )  Zirconia A; 6 pounds per  square inch at  4100° F. L-62-4460.1 

( c )  Zirconia B; 4 pounds per  square inch a t  36500 F. 

Figure 14.- Ef fec t  of load on zirconia  cubes a t  elevated temperatures. 

L-62-4472.1 
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(d)  Zirconia C ;  4 pounds per  square inch a t  4100° F. L-62-4476.1 

(e) Zirconia D; 6 pounds per  square inch a t  4000° F. L-62-4474.1 

( f )  Zirconia E; 6 pounds per  square inch a t  b50°  F. 

Figure 14.- Concluded. 

L-61-1880.1 
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Figure 15.- Loads f o r  compressive f a i l u r e  of 1-inch zirconia  cubes. 
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Figure 16.- Ef fec t  of thermal cycling i n  t h e  inversion range on co ld  compressive s t rength  of 
1-inch z i rconia  cubes. Limited data samples ind ica ted  by N; 49 cycles from llOOo F t o  
2100' F. 
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Figure 18. - Melting temperature as compared with interface contact temperatures of selected high-temperature 
refractory material. Interface loading approximately 0.3 pound per square inch. 
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( a )  View of br icks  as arranged for t e s t .  L-62-4469.1 

( b )  View of react ing surfaces .  

Figure 19.- Reaction between zirconia  A and magnesia br icks  under 10 pounds per  square inch loading a t  3500' F. 

L-62-4463.1 



L-62-4464-1 
Figure 20.- Reaction between z i rconia  A and magnesia br icks  under 10 pounds pe r  square inch loading a t  jlOOO F for 8 hours. 
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( a )  No-load condition. L-59-6522. 1 

(b)  Under 4 pounds per  square inch loading. L-59-7447.1- 

Figure 21.- Reaction between zirconia A and tho r i a  br icks  a t  4OOo0 F. 
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L-59-7442 * 1 
Figure 22.- Bricks a f t e r  tests f o r  react ion of t ho r i a  with magnesia and zirconia  A 

a t  78000 F without load. 

NASA-Langley, 1964 L-4121 
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